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ABSTRACT

A second approximation to the comrilte.thoory for the axisymmetric

deformations of thin elastic conical shells, as derived by E. Meissner and

F. Dubois, is presented. This simplification of the exact differential equa-

tion leads to a so-called Geckeler-type ap. proximation for conical shells.

From this approximation, a step-by-step numerical procedure is de.

veloped for calculating stresqes and strains throughout the conical eiements

of shell structures. The methods inclide computation of the edge shearing

forces and bending moments which arise from discontinuity effects at cone-

cone and cone-cylinder junctures, either with or without transverse rein.

forcing rings.

The range of~applicability of the approximation is also discussed.

I NTRODUC:TION

Because ol the inecrea,ingly frequent use of conical shells in the pressure hulls of
submarines, a simplified procedure has been developed by whic!, the elastic behavior of these

structural elements may be easily computed. The method makes use of exponential and trigo-

nometric functions for determining the axisymmetric discontinuity stresses and strains at

either end of a truncated cone joined to another cone or to a cyliader with or without trans-

verse reinforcement at the intersection, or those at or near stiffeners on semi-infinite cones.

The analysis underlying this computational procedure follows closely the Geckler approxi-

mation l to the more rigorous Love-Meissner equations of equilibrium for shells of revolution. 2

The use of a Geckeler-type approximation for analyzing stresses in conical shells has

long been employed in the pressure-vessel industry. However, when design calculations for
steep conical transition sections on submarines were first required in 1951, it was not known

whether the approximation was sufficiently accurate for the strength analysis of submarine

pressure hulls. A study of the exact LovcMeissner theory, as applied to conical shells by

Dubois 3 and Watts and Burrows 4 showed it to be impracticable for reinforced cone-cylinder

intersections. There was then developed by Wenk and Taylor s a first approximation to the

cow.plate theory which would facilitate analysis of reinforced junctures. These same authors

later presented a different form6 of the exact solution and one from which the errors involved

in an approximate solution could be specifically evaluated. Their results included a state-

mont of edgo coefficients for conical shells which provided a convenient method for an.lyzing
the ieinforced bitersections at both the large and small ends of truncated cones. The results

published in TMB Reports 826 s and 9816 were evaluated experimentally and were found

valid. 7

lReferences are l sted on page 32.



In a search for tcoro rLoid methods of computation, is second a~pproximaftion t4o Lh", P(o,

pinte t.hory which is eyiential!v the Gecketcr-typo approximiation for conical shells was r_.

considered. For the geometries of interest to %uhmarino dectigners this further approxiniatikn
was found to differ but little from the more rigorou6 nniy.Rsi.56 Also, aR iniclit- ho expected,
thik Cleckelor-type approximation was% inore reducible to a stel-by-,step form of =ni puta tickn.
The numerical procedure resulting from this simplified analysis is presented in this report.
First, equations for computing stresses and strains throughout. a conical sholl as a function
of edge forres and momnepts and the hydrostatic oressure loading ate presented. Next, equa-
tions are provided for computing thesti edge forces and moinenti where the cone element is
joined to another cor,3 or cylinder, with cr without transverse reinforcement at the common
juncture. A numeric(.! example is then given in Appendix A showing in tabular form the
routino hy which stresses und strains may be computed for a structure composed or two cyln-.
dricglI shells of different diameters joined by a conical transition section and having rein-
forcing rings &L iioth intersections.

The derivation of this second approximation to thu complote thoory for conical shnlls
and its justification are presented in Appendix B, The formula,, for strosses and strains re-
sulting from this analysis are derived in Appendix C.

GENERAL CONSIDERATIONS

In accordance with general methods for evaluating discontinuity stresses at shell inter.
sections, an unatiffened tr,;ncated section of cone, which is assumed to have a length sufficient
that the boundary conditions at one end do not disturb membrane deformations at the other, is
isolated for studry. Under pressure loading, the stresses and displcements everywhare in
the shell are the sum of the membrane terms anA additional termis corresponding to dison.
tinuity shear and tiiontent loads uniformly distribted on the periphery of each boundary. These
discontinuity effects, considered to be axlsymnmetrinal . depend on the contiguous atructure
to which the conical element is joined. They result hi)m the fact that the membrane defer-
niatlena which would occur in each memiber, separately, undr prespure loading are not iden-
tical so that the edges of the several elements theoretically would deform different amnounts
and hence would not match. To enforce rompatibility of displacements and rotations of th'i
intersenting elements such a discontinuity can be eliminated by the introduction of additional
forces and moments at the edges of each component shell. Those, of course, must themelves
satisfy equilibrium conditios. The method is readily1 applied to cone-cylinder and ronn-cone
junctures.

If transverso' roinforcsne A in the form of a rin,g stiffener is provided at the intersection,
a uorreepunding analysis is made with the additional feature that compatibility of displace-
ments and rotations is required of both the shellI components and the stiffener at the common
juncture, As another spocial case, stresses neaw ring stiffeners in a reinforced conical shell
are obtnined simply by considorig tihe large end of one semi-infinito cone joined to the small

2



end of another semi-infinite cone of equs' . , with a transverse ring at their inter.

section. In considering thc reinforced-ir..,,rsection problemn, it is first assumed that the stif-

fening rings are very narrow and thin so that there i., irctically line contact around the cir-

cumference at the common juncture of the three elements-the ring and the two axisymmetric

shells-and that the ring properties are concentrated on this line. However, if the inter-

section is reinforced by a heavy forged-ring type of stiffener with appreciable cross-sectional

dimensionq, then the assumption of line concentration is no Lorg3r valid, and the analysis is

extended to include the effects of such finite width and depth upon the intersection defor-

mations.

Particular cases of composite structures such as these are discussed in further detail,

and final formulas for the discontinuity shears and moments are given in this report. Th

analysis of composite structures including other components, such as spherical, elliptical,

and toroidal shells of revolution follows closely that described in this report, and sugges-

tions are given for extending the present results to such cases.

COMPUTAT!OW OF STRESSES AND STRAINS

A thin-walled shell, such as a ceno or a cylinder, develops only membrane stresses

and strains when loaded solely by uniform hydrostatic pressure provided that the edges of the

shell are unrestrained. However, in reality the edges of such sholl structures must be re-

strt,:ed in some manner, i.e., attachment to other components or foundations or closures to

make them pressure-tight. In the vicinity of these restrained edges, local bending stresses

are developed in addition to the uniform membrane stresses. Formulas are presented herein

for determining the total stresses and strains which arise from the superposition of these
discontinuity and membrane effects.

The nomenclature and sijgn conven-

tions used in the analysis of a truncated Q.

conical shell are defined in Figure 1. These pRi M,

are applicable wheth,r the edge of the shell -2
under consideration is thc large- or small-

diineter end of the cone, or the end of a cv- Ri

finder, which is taken to be the limiting case Axis of
of a truncated cone (either end) as the angle Symmetry

ae approaches zero. Note that z is the dis-

tance along the generator of the shell meas-

ured from the edge under consideration and
not the distance from the cone apex as in

Referenve 5.
A bending moment SI1 is considered posi- Figure 1 - Notation for Conical

tive if it tends to put the cuter surface of the Shell Element

3
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shell in tension, and a shearing force H. is considered positive when it acts in a direction
away from the axis of symmetry. The transverse shearing force Q, is comnosed of t'lle radisl

shear component H, and the axial force pRi/2. A hydrostatic pressure p is considered positive

when it is external; for internal pressure p is negative. The subacript i is used to dstinguish

the structural elements from each other where an intersection corposed of two or mere such

elements is being analyzed.

The quantities Hi and ,i are discontinuity shears and moments arising from the in tcr-

sections of various shell elements with each other an,' with -i iffening rings. They may be

determined in terms of the shell geometry and elasticity and the surface loading by erforcing

conditions of force and moment equi!ibrium and continuity of radial displaceo,:ent and axial

rotation at the jut; .ure.

Once the aiscontinuity shears H, (or 9i) and moments Mi are known, the folkwing

formulas may be used for determining the longitudinal and circumferential stresses and

strains in each shell element as functions of the distance x from the shell edge under study:

Longitudinal stresses (the upper sign is for the external fiber and the lower sign for the in-

ternal fiber):

pR 3
=-- I - -tanat +

2h i cosal -h. 2f1 'i
[1]

Circumferential stresses:

aR - O + V 1 (21
4i cos ai  2 h £ 2  AI i

Longitudinal strain (external fiber):

pR P )Q
(1 - 2Y)+2 - (1 - P2  tan a i  - 'I

2EAicos a i  Ehi  i

Mi '
.. F,]

r+bW'



L.ongiudinni struin (infornht rihnr):

-,ons, j . j
(41

(Cirtuiferontial arain (all fihorA thrighrt sholl thi'knosq):

In tlPACf. xpr-o1Min~nr

134 014 1 ro 0.3
h'A1

mnlml

U. =I~i - - 1,81TR; for v- 0..

Equat4ons [11 through fl] are dwrvq. In Appendix C.

It should be noted that for a -conical shell the tadlua R variox linearly with, the coordi.

nate distance a, l.e., R - , ±t a sn a, whoro ML minup sign applies to the large end mnd the

plus tlgn to the mall end u a trunoated cone. In the limiting oase a th-a hilf sox anile

W, 0. Foimulau[lJ WJtough [5] reducat t analog<u expreMssOnto for a circular cylindrical shell
for which case the radiust R fow becomes a constant.

The functions q5, 4, , *. F1, 46. F, ind Fd used in computing the bending taimn in
Equations (M] through (5) are defined hy tho 'nilowing:

*(,-11" (coo li + sin fi); f (13z) .. a- coS fj

-*d, ( CO ) - (coa FR - sin fif); 4 (OXr) - *-fl sin O7
[T]

3X ( I)th (I - ) (1M) + v I - ) (iLa)

1 b., (/x ±(1 -v2) 4(13 z) +.vi' 12 (1 e (fir)

-- t'1 1 , . -
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where the plus sigits apply to F and F, and the minus signs to F and 1,; they are all functions

of the dimensionless variable ox, These quantities computed for several values of 13z are

given in Table 1 and represented graphically in Figures 2 and 3. It is seen that all Lhe fuic.
tions approach zero as the quantity /3 becomes large. This indicate- that the bending prO-

duced it the shelk by the discontinuity forces and moments is actually local and damps out

rapidly away froi:i the loaded edge. In practice, it is convenient to rhoose values of /3z which

appear in rable I so that interpolation will not be necessary. From these and with t3 com-

puted from Equation [61 le corresponding values of x can easily be found, and the stress and
strain distributions may tiaen be determinod using Equations [1] through [5]. The procedure

for carr,,ing out these computations is illustrated in Appendix A.

TABLE 1

Functions Defining Bfding Action of Shell

0 1.0000 1.0000 1.000J p 6.45141 0.99141-4.4686 0.9914
0.1 0.9907 0.8100 0.090?" r,,*' 1 2!22i ,u 85; -4.6062 0.3995
0.2 0.9651 0.6398 0.8024 0.16 5.i ( 1,638 -46351 -0.0928
0.3 0.9267 0.4888 0.70' c S.5444 1.8968 -4.5752 -0,4936
0.4 0.8784 0.3564 0.7, 0.26101 5.1494 2.0372 -4.4428 -0.8130
0.6 0.7628 0.1431 0.4530 3, ' 4,13v8 2.1412 -4.0230 -1.2430
0.8 0.6354 -0.0093 0.3i 0.3 .a,,1 2.07C2 -3.4785 -1.4494
1. , 0.5083 -0.1108 0.190k P,31I,61 '.565' 18875 -2.8851 -1.4933
1.2 0.3899 -0.171 1 '091 17 6 7 Q ' 408 -2,990 -1.4244
i.4 0.2849 -0.2011 0.0404 ' 113 1.3562,. -:. S I -1.2853
1.6 0.1959 -0.2077 -0.0059 0."i1 I 0.,I6, . 1.0960 -1.2755 -1.1076
1.7 0.1576 -0.2047 -0.0235 0.1812 1 0.576 0.9661 -1.0634 -1.0127
1.8 0.1234 -0.1985 -0.0376 0.)6101 0.4770 0.8418 -0.8706 -0.9164
1.85 0.1078 -0.1945 -0.0433 0.1511 0.3958 0.7821 -0.7814 --0.8679
1.9 0.0932 -0.1899 -0.0484 0.1415 0.32Q6 0.7246 -0.6972 -0.8206
2.0 0.06G7 -0.1794 -0.0563 0.1230 1 0.1864 9.6158 -0.547, -0.7274
2.2 0.0244 -0.1548 -0.0652 0.0895 -0.0203 0.4241 -0.2867 i-0.5533
1.6 -0.0254 -0.1019 -0.0636 0.0333 -0.2397, 0.1461 0.0377 1-0.272!
3.0 -0.0423 -0.0563 -0.0493 0.0071 -0.2868 -0.0101 0.1752 -0.0877
3.4 -0.0408 -0.C237 -0.0323 -0.0085 -0.2463 -0.0784. 0.lS3 0.0144
4.0 -0.058 0.0019 -0.0120 -0.0139 -0.39t) -0.0878 1 0.1428 0.0640

i5.0 -0.0046 0.0084 0.0019 -0.0065 - 1.018 -0.0336 0.0334 0.0374
7.0 0.0013 0.000. 0.0007 0.0C06 0.0072 0.0040 1-0.0070 -0.0026

DETERMINATION OF EDGE FORCES Hl AND MOMENTS hf,

The discontinuity forces end moments which arise fior a m ismatch of membrane defor-
mations in intersecting shells may be determined from considereqions of force and momsnt

equilibrium and of compatibility of rotations and displacements of the edges of the component
shells at the common jdncture. The unit r,'d4e rotations and displacements can be expressed
in terms of edge coefficients suph as those dei.Ined and discussed in References 5 and 6.

Best Available Copy
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These edge cenfficients are functions of the geometry and elasticity of the two intersecting
component shells; they represent the amount of axial rotation and radial displacement per

unit edge bending moment, unit edge shearing force, and unit surface pressure. The total
rotation 9i and displacement ii of the edge for combined loading are then obtained by super-

position, i.e.,

9i a, Mi + Vi Ili + rip

[81
Hiidi Mi * gHi + fp

where al, b c5, di, fi, and 9, are defined as the edge coefficients.

The method of using edge coefficients is general and is very convenient in the analyiis
of any composite structure, such as those encountered in pressure-vessel design. Here we
shall consider in detail the intersections of conical and cylindrical shells, a typical case of
which is shown schematically in Figure 4 with the discontinuity forces and moments acting

at the shell edges, anti treat particular cases of interest in the field of submarine pressure-

hull design.

Symmetry 
.

R2  I
Figure 4 - Notation for Cone-Cylinder Juncturea

CASE A: UNSTIFFENED INTERSECTION OF CONICAL AND CYLINDRICAL
SHELLS OF DIFFERENT THICKNESSES, SUBJECT TO EXTERNAL HYDRO-
STATIC PRESSURE

In this analysis of the intersection of two shells of revolution, it should be recalled

that each component shell is aasurned to be sufficiently long that the boundary conditions at
the far ends do not affect those at the common juncture.

When two such shells, identified by i - I and i - 2, are joined together with no trans.
verse reinforcement at their intersection, the discontinuity bending mnomt.ne and radial sheatiig

8
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9i !- Cos Ca.
E

w here

,=12 1- 2)

These edge coefficients are functions of the shell goomietries and material properties
only~ and are independent of the type of intersection. Since the coordinate z is measured from
the intersection (Figure 4), the signs of the coefficients ai . bi , and cidiffer from those given
in Reference 5 where z is measured from the cons3 apex. The upper signs in Equations [10]
and [11] apply to the large-diameter end of a cone, and tha lower ones to the small-diameter
end of a truncated cone'. It should be noted that those terms in Equations [11] with alternate
signs vanish for a cylinder since a - 0.

Thus, after the appropriate edge coefficients have been determined from Equations [il
the edge moments and shears at the unreiiiforced intersection of any combination of two cy-

lindrical or conical shells may be found from Equations [91 and [101.
For the particular case of the intersection of the large-diameter end of a trun'nated cone

(i = 1) with a cylinder (i -2) of the same shell thickness (h1  A h), Equations (9] and [10]I
reduce to the following-

3 II

PR, sin a [V 4(1 - (1- Cos 0)

H , 2(c os c + ,,eo -V)i 2 Hjo a 2 Q2

(12]
PR1

Q H cos a + sin a

where R1 is the radius of the largzr ,A bz ice)o h oe

Another special case is that of the in terse"u of OhP sm-Rl-diameter end of a truncated
cone (0 1) with a cylinder (i -2) of the same shell tCickaess. Here, Equations [9] and [10]
become:

10



sin a .3 A 3AM
1 + H A2

Vr8V (Cosa + 4" ) U2R 1 Cos05

pR sincc V2 I -- )(- cosa) [L- + 1 /2 Q2
2 (cosa + Cosa )  U sin a 6 1cosa

Q 1 =lcosa---- sine

where R' is the ,aidius of the snaller end (frustrun circle) of the cone.

CASE B: CONICAL CR CaLINDRICAL SHELLS WITH CLAMPED EDGES,
SUBJECT TO EXTERNAL HYDROSTATIC PRESSURE

When cone-cylinder intersections are reinforced by very heavy bulkheads, reasonably

accurate solutions may bo obtaned by treating each component qhA!! .ep°-atoly and assuning

that the edges of each shell qre rigidly fixed, i.e., zero radial displacement and zero rotation.

The resulting bending moments, radial shearing forces, and transverse shearing forces for

this case are, respectively,

pRA(1 -) 3p RA3 tan2 a

U2 cos a r-U 3  cos aJ

pR Sphtan a Vp(1i Rh

H=:; tan a T + (14]

2 2U-cosa U Co_
3 -

~pl Q-Hcosa + sin a

2

where the upper sign in each expression together with R - R1 applies to the large-diameter

end of a truncated cone and the lower sign together with R = R1' applies to the smll-diameter

end. These same equc'ions may be used to determine the fixed-ended moment and shear for

a cylindrical shell by setting a '- 0. it shouAd be noted that the terms with alternative plus

and minus signs will vimish for the case of the cylinder.

Arl

I%

• .+ ,

I- • ' .
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CASE C: I NTERSECTION OF CONICAL AND CYLINDRI'CAL SHELLS REINFORCED
BY A STIFFEN4ER OF FINITE RIGIDITY, SUBJECT TO EXTERNAL HYDROSTATIC
PESESURE

A general composite structure, -that of two intersecting cones, covered under t~h;Q case,

is sL.own schematically in Figure 5.

Axis of __

Symmetry-

vigure 5 - Reinforced Cone-Cone Juncture

Particular cases of interest to the pressiire-vessel designer which are specializations

of this somewhat aveneral case are: the reinforced intersection of the large-diameter en~d of a4

cone with a cylinder, that of the small~diameter end of a truncated cone with another cylinder,4

that of two cylinders, that of the large-diameter ends of two cones, and that oi the small-

diameter ends of two truncated cones.

For all these cases, the simplifying as~sumption is made that the two shell elements

and the~ r,&iiiotciag ring havo lire contact around the circumference at their common juncture.

A more refined analysis including the effects of a finite-v~idth intersection is presented in

the next section.

The discontinuity shears and moments acting on the edges of the two shell elements

identified by the subscripts i - 1 and i -2 -As in Figure 5 may be dete-mined by solving the

!ollowing set of four simultaneous algebraic equations. These equations result from satis-

fying conditions of continuity of radial displacements and angular rotations of the three in-

* tersecting elements at their ecornmon ]uncture, find force PHn moment equilibriu;'.

d1mi -I 0 - 'co)81 ' 0 =-f,

\ R7. R?,

d2M2  a I R1  + (92 A-k-i H2 =-f P i59

( -kb Rr H1

12



kbMI a2  kb 1 2 + b2l 2  r 2p
R,.

where

ka k b
EAr E~r

and l, is the crciss-sectional area of the ring stiffener,
I, is the momen t of inertia of the ring cross section about the radial axis through its

center of gravity,

Rr is the radius to the centnr of gravity of the ring cross section from the Ayis of
symmetry, and

E is Young's modulus for the ring material.

As has already be'r mentioned, the general Equations [15] may be applied to the rein-

forced intersection of any combination of two conical or cylindrical shells simply by computing

the appropriate edge coefficients (al, a 2 , b,, b2 1etc.) for each component shell from Equations

[111. The procedure for getting these coefficients is identical to that for the unreinforced in-

tersection problem, Case A. The transverse shearing force Qi may be determined as before

from Equation [101.

CASE D: EFFECT OF A HEAVY FORGED-RING TYPE STIFFENER
UPO THE INTEISECTION DEFORMATIONS

In Case C where various reinforced intersections were considered, it was assumed that

the stiffening rings were very rarrow so that there was practically line contact around the

circumference at the common junpture of the three elements-the ring and the two a-isymmetric

shells. Consequently, the axiai rotations 01 and radial displacements wi of the two component

shells and the stiffening ring were considered to be equal at the common juncture. This is a

valid assumption provided the stiffening ring actually is very narrow as in the case of a deep

slender rectangular or "Tee" cross section attached at the web as shown in Figure 5.

If, however, te stiffening ring has a thick web or a wide Faying flange, or if the inter-

section inciudes a heavy forged ring as is common in submarine pressure-hull design, then

thc -uncture effectively consists of the two shell edgis with a reinforcement of finite dimen-

sions between thcm; see Figure 6. Althcugh the lines of action of the axial membrane forces

cf the component shel1s may intersect at a common point on the centroidal a-axis of the forged

ring and stiffener, eccentricities in the radial as well as in t.e axial direction may arise where

the edges of the shells meet the forging. The effects of these eccentricities on the discon-

tinuity moments and shearing forces, which may be significant, are taken into consideration

in the following extended analysis of the boundary conditions. Here, as before, any sorndary

bending of the juncture ring in the meridional plahe is neglected.

:-3
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Heovy Forged Ring I'M

~I~~T M2
pR 1  .. >. .<.H ylindtr

H 2~ Element

A H
AK pR1

R. R R2

I intersection
Coneenr

Element Sifn Rr
z

Figure 6 - Notation for Reinforcement at Cone-f7l under Juncture

The new juncture conditions are as follows:

I'orce and moment equilibrium require,

3 =r HI + - H 2 + P(8 1 +8 2 ) -

1Z C2  R 2 (R R)(R+ X[16]

M3 =-Ml -- M 2 + -81"11 -- 82 "/2 + (R 2  R)R R 1
R, R R R,.8 PR.

P
+- (82 a 2 N

2 R,.

while continuity of structure requires,

1 3 +81 i3

-17 3r. 2 63 [17]

0 0'. 0

where the rotation 03 and radial displacement Z~ of the juncture ring are given in Reference

5 to be
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931 +~ R- R- 2 I hr -/P~A. it. k, - -- it +  U2 " 8 1 )(R2 + Hilh l' er R, 1? 81 4,'

"!JI - &,..i..l l l p(8 t

whfre 3

k and, k/,
RA, KIP

from the elmentary thin-ring analysii. le.r A, Is the coi- oetionil mea and I, Is the mo
meat of lnlktia About the as-xis tf the composite reinfewuanpent shown shaded in Figure '2.

Thu total rotation. and radial diacpleftnents 4t, ho edge of iaoh componont, shell for
coniied !on dng zTr obtained by superposition:

; - d;.iij z ? ' gs / -+ + P1]

where the edge coefficients a,, 2, i, 62, etc. re defined by Eqjation ill] as before.
The rout continuity conditions [17] together with Equations [18] and [12 ,lead to the

ftnlu~wl ausI..n.f ~ou 5Q!n'.-, _,_ .k.eb.Cr- ;:.-' r t-he u kr. ;n t;m ... tinulty mo.
ments and sheart M 11.1121 /, and /12:

S R, R, Rr

R2  R 2  R3

8 Ip 1 R[0
+R ) +Ri) + - 6
+ kb (R2 - 1) (R2 + + 6~ (6 - ~2 P

814 2 R,



2b b + I' 28' k,1 bkR I 
?. ---(1--

rr

- .1 + kb 23 
4.7 W; _ 2 k + (S. + 82) k. -

2 2 2o
2 R3

Rr

82 + ?p2 82  
'-2 2)R

-- kb (R2 - R 1) (R2 + kbl) (8

8Rr 2 .

(a -kb-- R 4 kb- A2 . b -8IkbI-- t + 82 kb-- H2
RR r  [201

kb kb R3 1
- +-- (R2 -R) (R2 + R) 2 +_ ( ,2 2 ),- p

8Rr 2 R,

b- H1+ (al - kb- 12 + 1kb -- HI b b 2 -82 kb ) H 2

[ k b  
kb R3]F C-- (R- R1) (R2 + R X)2 - - ( a 2 - 82 P8Rr  2 R,

Thus, for all the examples considered under Case C, if the reinforcing rings have fay-
ing webs o: flanges of appreciablc "-ii" r H. the intersection includes a heavy forged ring
as shown in Figure 5, Equations [20] should be used instead of [15]. Any contiguous piece
of shell material in contact with the raying flange should be included when computing A, -nd

I.

APPLICABILITY OF METHOD

The rarge of pplicability of the methods in this report was determined by comparing
the edge coefficients with those of the exact solution of Reference G. The expressions for
determining the edge forces and moments and the - ,"-essen and strains are derived from the

Best Available Copy
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transverse deflection function and its derivatives. The higher derivatives of w, at least

through the third, will be as valid as w itself, since derivativri,- up to tl'i third were used in

determining the co, stants of integration. Therefore, the accuracy of the corhputed stresses

and strains should be about, equal to that of the deflection function.. The edge coefficients

are found dirrt.ly from w; and its first derivative, evaluated at the shell edge (x = 0) so that

the errors in the entire analysis shpuld be of the same urder of magnitude as those in the

edge coefficients.

The edge coefficients that follow from the analysis of the report are almost iderticEl,,
equal to those obtained by setting thi special Pl functions, which appear as nultiplying fac-

tors in the coefficients of the exact solution of Reference 6, equal to unity. The exceptions

are that the third terms in the equations for c, and f, are not present in the approximate co-
efficients of this report. However, these omitted terms are generally negligible compared to

the other terms if a is not nearly equal to Tr/2. An estimate of the maximum error in each of
the approximate edge coefficients may be made in terms of the special 01 functions, appearing

in Reference 6, of the dimensionless parameter where

1/2(1 - v2 12 ccis~a
2 C /2

h2 sin4 a

If e is restricted to values of 10 or more for a conical shell made of steel (v - 0.3), the maxi-

_urn error in any one of the edge co!fficients computed from Equation [11] of this repott would

be about 10.5 percent for the large-diameter end and about 6.9 percent for the small-diameter

end of the cone. If e is restricted to values of 20 or more, the maximum errors would be about

4.8 percent and 3.8 percent, respectively. The inequality f> 10 corresponds to

21? cosa

h sin 2 a -

and > 20 to

21 cos a

h sin 2 a >0

The rrclyeis presented in this report is also based upon the assumption that the axi-

:,mmetric shell eiements are of semi-infinite length so that there is no interaction between

diecontinuity forces and moments exising at arijacenc ends. From an exanination of Figures

2 and 3 it can be seen that this condition is satified if jil for eithe.- etd is greater than or

equal to 3.0 (where I is the length of shell bctween discontinuities). If the value of Oil i.s

less than 6.0, then the discontinuity stresse,3 and strains from each end will overlhp through

a portion of the shell and they should then be superimposed. This linear superposition may

IA
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be done graphically = in the example of Appendix A.

The discontinuity bending moments and shearing forces which arise at the juncture of

any two shells of revolution may be found from E quations [9], [151, or [201 providing the ap.

propriate edge coefficients for the compont-a sheais &'e used. In Reference 2, Timoshenko

gives ar approximate method for analyzing t'2 t in spherical shells in which he sim-

plifies the problem by 'eplacing the cr i.- of ti> Ahell noar the edge by a tangent conical

shell and, in turn, treating this as 'equivalent cylinder." in this particular case, the

edge coefficients ap, bi , d,, and g, as given by Equation [111 can be used directly, but the

memb:ane (seccnd) terms of c, and fl for a spherical shell should be derived. Similarly, Squ.

ations (1] through [5],ca, bo used to compute the stresses and strains in such a shell except

that the membrane teifns appearing there, those terms containing the pressure p, should be re-

placed with those derived for a spherical shell. This same procedure for analyz... g discon-
tinuity stresses may be extended to any other shells of revolution, i.e., eiiipsoidai, tori-

spherical, tori-conical, provided the slope and change in slope at the edges are not too great.

Although the results presented herein lead to 9 rapid method for computing elastic
stresses, which at the same time have been verified by experiment, no attempt is made in this

report to establish a criterion for allowt,,ble -trbss in design, The application of these results

to a design process is subject to the ski;.n and judgment of the engineering designer.
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APPEN4DIX A

NUMERIAL EXAMPLE

The methods described herein for computing the edge moments and shearing forces and

the resulting stresses and strains in the vicini'y of sn intersection r~inforcod by a ring of

i n ite dimensiong will be applied to a spcciric anodel1 test*' at te T~ylor Model Basin as an
illustration. This model consists of two cylindirical shells of different diameters joined by

a conical transition section. Both cone-cylinder intersections were reiniorced with stiffening

'rings of finite dimensioni. The dimensions, including details of the cross section of the
large cone-cylinder intersection are shown in Figure 7.

______- L ~ 4 egees\

-0. 1875"

Vp I ~'tO.625"

Figure 7 - Schematic Drawing of Illustrative Model

The analysis of the large-diameter intersection will be demonstrat.-id in detail. An ex-

amination of the cross section of the juncture shows the effective stiffening ring to have an

appreciable width which is estimated to be 0.36 in. (including effective weld material); tb.ere-

fore, 8 0.18 in. The rs~dii of the two shells at th jcue and the radius to the neutrqpl

axis c' ' ng ar- very nearly equ dl so it ir P.srtumed that

R1 R.2  R3  1.

r r r

and

I? -R.
2
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The moments and shearing forces, M, M,, H, and 112 will be determined from Equ-

ations 20]. The subscript "1" willbe assigned to the cone, and "2" to the cylinder. Note

that every term in Equation (20] contains Young's modulus E in the denominator. Since all

the component pars of the juncture are made of the same material (stoel, for which E = 30 x
106 psi), all equations may be multiplied by E to simplify the computation. Edge coefficients

(multiplied by E) are first computed for both shells from Equations [11]. Then the cross-

sectional area A. and moment of inertia I (about axis a - z) of the effective ring are computed,

and the quantities Eka and Ecl, are determined from Equations (18]. The values thus deter-

mined are substituted into Equations [201 which are then solved numerically, giving:

Nt = 2.1605

2 = 0.739266

HI - -5.69747

H2 = 2.27055

From Equation (101:

Qt = 2.99694

Q2 H2 
= 2.27055

Note that a large number of significant figures are carrie b r" *-d in the following calcula-

tions. This is believed necessory because of the many nume. i at operations that are performed

on each quantity.
With these values for MI, M2 , Q,, and Q2 and the geometric and material properties of

the shells, the stresses and caains in the large cylinder and in the cone as the result of the

discontinuities arising from the juncture with the stiffening ring may be determined from Equ-

S.ations [11 through [5]. Membrane stresses and strains (due to pressure alone) are includod in

these expressions. UL_,,, --.11 those strese and st.rains are to be found for a large number of

values of z, the computations are rather tedious, so a calrulation sheet has been devised

which facilitates the work somewhat. This sheet, filled ;n for the large-diameter end o the

cone of the model under discussion, is shown in Table 2. The numbers and expressions in

bold-face type are ptrmanent figures on the sheet. Similar calculation sheets for the large-

iiameter cylinder, the smalt-diameter cylinder and the small-diameter end of the cone are re-

ouircd to obtain a complete stress and strain distribution. Note that on tho sample calcula- I.

tion sheot the procedure was not derived from Equations [1) through [5], but drectly from the

expressions appearing in Appendix C. This amounts to an algebraic rearrangement of Equ-

tions [1) ,through (51 which was found more advantageous in cases where a large number of

nalculations are required for all the stresses and strains.

The circumferential strain distribution as a function of distance from each intersection

are shown as iolid lines for the two cylinder components and as broken lines for the cone in
t4
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Figure S. The circuiferpntial m,mbrane distribution for the cone, representod by the first

term of Equation (5], is also shown. It is seen that the discontinuity effects fret" botb inter-

sections exist throughout most of the conical shell and overlap witheach other, that is, the

circumferential discontinuity stains indicated by the broken curves differ from the membrane
sorain throughout a large portion of the cone. The total circumferential strain at any point in

the conical shell then is the algebraic sum of the discontinuity strains from both intersections

and the membrane strain. This superposition was done graphically in Figure 8 and the result-

ing distribution is shown as the solid line labeled eot The broken-line curve labeled 1.

was found fror'the analysis of the large end of the cone and that labeled 2 from the analysis

of the small end. The difference between the ordinates of curve 2 and the membrane line
were then added to those of curve 1 to obtain COTot.

A similar procedure was followed in determining tht) dis'tribution of longitudinal strain

on both the external and internal surfaces of the shell elements. The lcngitudinal strain dis-

trib .ti: for this example are shown in Figure 9. For clgrity of the curves, the component

strains (strains from each intersection and the membrane distribution) are not shown. N.'Le

that the total strains and also stresses thus found are for an external pressure of 1 psi; i.e.,

they are essentially strain and stress sensitivity distributions.

The technique indicated by the results of Figures 8 and 9 of this report for linesriy

superposing the discontinuity and membrane effects can be used for short shells provided the

length I between adjacent edgesis such that Bil > 3.0; this has already been discussed uinder
"Applicability of Method." For cases where P~il < 3.0 the discontinuity forces and moments
at one edge of the shell may influence those at an adjacent edge and vice versa, so that in

such instances this method of superposition-may still be used but the resulting distributions
would be questionable. An P.nalysis which considers this interaction and which may prove

convenient in practical application is given in Reference 8.

Experimental strain data have also been plotted on Figures 8 and 9 for comparison with

the theoretical distributions determined by the analysis given herein. It is seen from these

plots that the agreement between theory and experiment for this particular ci, z? is very good

and certainly falls within the limits of experimental error. The agreement is considered for-

tuitous, and this erie example does not constitute any extensive verification of the simplified

cone analysis presented. This model is one of a series of asix such models which have al-

ready been tested at the Taylor Model Basin. The experimental strain data obtained from the

complete program. will be used to check furdier the validity of tWe simplified cone analysis
,';veolced in this rcport. These additional results will be forthcoming in a Taylor Model

Basin report.
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APPENDIX 3

GECKELER APPROXIMATION FOR CONICAL SHELLS

From considerAtions of equilibrium of a shell element, Dubois3 established by stand-
ird elastic analysis an expression [Or the transverse displacement v) of a thin conical shell

in terms of a fourth-order differential equation. The homogeneous form of this equation is

d1v d3 wt d' w 12 (1- _V 2)

d!7 dys dy 2  h2 tan2a

where y is the meridional distance along a cone element measured from the apex.ISolutions of Equation [B.1] are considered to be very accurate but usually require far
too much computational time to be practical. Hence, resort is often mada to approximate
mnethods of the type discussed below. Taylor and Weak in Reference 6 havc found solutions

to the complete Equation [B. 11 in terms of Bessel functions of the first and second kind, both

of second order.

The radius R? for any point on the cone is (Figure 1)

R -y sin c [B.21

If the y's, wh~ich are coefficients of the derivatives in Equation LB.lj1, are eliminated by using

[B.21, and if [B.1 is then multiplied by sin2 C , the following reqults:

d4 W d3 W d2 W 12 (1 - V2) COS2 O
? +27--sn - 2-- Sin 2'w + WO [13B.31
dy' dy3  dy2  h2

It has been shown in Reference 5 by order-of-magnitude considerations that, for the range of

parameters of interest to pressure-vessel designers,

d4 w d3w dwJd
R > 2R- sn -. S'in a [B. 4]

dy max d y dy2  Ra Rdy a

ie., the second- and third-order torms~appearing in the complete, Equation [B.33 njay be.neg-
lected in comparison with the fourth-orderone.. W~fk aTaylor.in Refere.,5 add u

the first approximation, that of neglecting the second-order term on]ly, sand obtained- a- solution

for the transverse displacement w in termnsof Bessel functions-,of the firgt.an4 second kind,
both of zero order. 'They indicate that rrom the inequalities B.1the original differential equa.

tion could ts further simpli fed if the"' thi'd-order' ternm i; al so fik~lected. The analysi s of the

presert report is based on this second~ripproxiniation.

Further, the discontinuity bending sfresses are very local and-damp -out rapidly away -

frnm the juncture region of -any two intersecting shells. Hence it is sufficiently accurate to

Di5



treat the radius R appearing in Equation [B.3) .as constant and equal to R0, the radius at the

edge of the component shell, in determining these local ef'fects. Geckeler 2 proposed approxi.

matioas of this type in dealing with such local bending effects in thin shells; thus the so-

called "Geckeler approximation" for conical shells reduces to the integration of the equation:

d4 w 12 (1 - P2) cos 2 a
-+ - w - 0 [B.51
d;,4  

A 2 R 2

As may be seen from Figure 1, the distance x from the juncture edge of the cone to an

=bitrary point on its surface is

YO - [ [B. 61

where yo is the slant heigt of the cone. Further, if we define

4 (1 - v2 ) cOs 2 a[B.7I

Equation [B.5] may then be rewritten in the form

- + 49 4 W -0 [B.8]
dX 4

It should be noted that Equation [B.8] is identical in form to the homogeneous differential
equation which governs the axisymmetric transverse bending displacenints (and therefore the

stresses) of a cylindrical shell as given on page 392 of Reference 2. For this reason the

Geckeler approximation is sometimes referred to as the "equivalent cylinder" approximation.
It is further noted that as the cone degenerates to a cylinder, i.e., a -4 0, Equations [B.7] and

[B.8] reduce expctly to those for a cylinder.
it should be emphasized that such so-called "approximate" methods are schemes to

obtain simpler solutions to the exact Love.Meissner equations for the bending of shells. The

membrane solutions for conical shells, which depend upon the loading and are particular in-
tegrals of the complete equation with a nonzero right-hand side, are very simple for the case'.

or hydrostatic pressure loading; they should always be used with either the exact or the ap.

proximate bending solutions when the cone angle is not nearly equal to zero, i.e., t _ 8 deg.

When the angle a is very nearly equal to zero, the radius R ;ries only slightly so that the
me:ribrane solution for a cylindrical shell is sufficiently accurate far superpnsition with a

be.nding effect.
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APPENDIX C

DERIVATION OF THE STRESS AND STRAIN EXPRESSIONS,
EQUATIONS [1] THROUGH [51

The stresses devoloped in the shell are given by

N 6i

A A2

where the upper sign is used for the outer fiber and the lower one for the inner fiber; this og

convention is retained throughout this appendix. The first expression of [0.11 is the totkl

longitudinal or meridional stress given as the sum of the meridional compressive cornponertt*

and 'he meridional bending component. The second expression is the total circumferential or

hoop stress given as the sum of the hoop compressive component* and the hoop bending com-

ponent./

The corresponding strains are determined from the tw.o.-dimensional Hooke's law to be

X (ax - =l, 1 N - vNO -~ 6Afx$M

[C.2 1

E 6- (a- Px)--1 Nb- vNz + - + -

The complete expressions for the stress couples and stress resultants pertaining to an

axisymmetvic conical shell are given in Reference 5. In terms of the sign convention of the 4
present report these are

d 2 W - vsin a dw

*2 R dx

d sin a d'

d3 W sin v d2 W sin 2 a dvc

D ,w3 d /x R dxl

*Tensile if NX, N4, are positive.
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N~=-..~(---Q~tan) -

/ d4 W d3 t sina dw sin adw P i

sina dz4  d-- R dx2  R da CS

pR .]
tann aN X 2 co s a

where the flexural rigvidity D 4
12(1- V,2)

"fis the mioment in a meridional plane,

M is the moment in a transverse pianc,

Qx is the transverse shearing force,

N is the stress resultant in the) 4S-rirection,

N-. is the stress resultant in the x-direction, and

p is the external hydrostatic pressure (replace p by -p for internal pressure).

It should be noted that the terms containing p in Equations [0.31 are the membrane stress re-
sultants obtaineed from membrane analysis for hydrostatic pressure loading.

From the same order-ofrnmagnitude considerations as those used in Appendix B to de-

rive Fauation 1.Sit can be seen that the following approxim3!te stress couples and stress
resultants should be of sufficient accuracy:

w4

M =D-

dx2

Nx Qz tana ct

P? d4 w_ R

COS d4 Cos o a

d 3

It wi iow bo shown that another term shou-Id be included in the expression frr

given by [C.41. From Hor '-,w law [C.23 and the geometry of deformation it is seen that
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Eh R

so that

.. Eh i +vN [C.51

0 R

By superposition,

bending + Wmembrane

i.e.,

WWb cos- + -- J- [C.6]CoEc +i c os a 2

where Wb is that part of the transverse displacement w exclusive of the membrane component.

If Equation [C.6] is evaluated at the shell edge x = 0, the edge coefficients, d, g, and f are

obtained; see Equation [8]. The edge coefficients so derived differ only slightly from those

given in Reference 6 which are believed to be exact.

If N X from Equations [C.41 and i as given by [C.61 are subsituted into [C.53, then

N -cE - - + vQx tand [C.7]
R cos a

Further, if wb is detetnined frtn Equation [B.8] and substituted into (C.7], then

R d4 w; pR
N =D ..- + vQx Can a [C.81

cos a z4  cos

With the stress resultants NX, N6, Q , and the stress couples M X and M thus deter-
mined, Equations [C.41 and [C.8), the expressions for the shell st" ssos . a n -, ,c'm1:

pR D d 3  6D d 2 w
ax tana + [C.9]

2h cosa h dz 3  h2 dx2

) 1?D d4 w v d w 6v.D d 2 w

A cosa h cosa dX4  A dz3  A2 dh 2

To express these stresses in terms of the edge and surface Liadnngs and also the geometric

and elastic properties of the shell, *lxnrvssions for the deflection w and its various deriva-

tives must be found. This is done by integrating the differential Equ'tion (B.3], Tbe srlu-

tion of th;i homogeneous differential equation is

* 29



w-- e- 13 x (cI cos 6z + C. sin 6x) + ef3Z c3 cos 13 + C sin Z) tc.!1]

where the constant3 of integration c, c2 , c3 , and c4 are determined from the hk,,," con-

ditions

Wo -0 at x -0 0

Mx= i at x -, 0 [C. 121 ,

Qx =Q at x = 0

where M, and Q, are the edge bending moment and shearing force, respectively. The first of

these conditions requires that

C3 c w 0 [C.131

When the second and third conditinns are satisfied,

I i i) [C. 14]!

C= -
[C.151

2DB2

With these values for the constants, the solution for w bectmes:

- r(_ Qi + .mIf) cos ex - PMi sin ox [C.161

2DI63 L

Successive derivatives of this deflection function ire:

d (sin Z + Cos ) + M i cos

dx Di; L

d2W :,.Q, sin Bx + 3M1 (co s xB + sin ox)

dz 2  D C9

rC. 17]

daw e-f~?* EQ. (cos Bx - sin Bz) + 2I3!4 sin f3z I

d'C - [2Q, CO - 231,(cos x - sin 6)j

dz4 D
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Substitution of Equations [C.17] into [C.91 and [C.10J g1_ ... :4 the stresses,

ax = . i tana e - X (cos z - sin ;3-) + e- IX sin 6x
2h cosa hL.,, •

PLY 4 3 Qj s i [C.18]
± e- 16 (cos j3 X- sin /P) ... X sin
h2  L.

PR2R,32 Q1a.5 .- P- , I" , (cost - sin 8x) -- e - !S' Cos + +Vax

cosa 2 cosa L Be

[C. 191

Therefore, Equations [C. 181 and [C.19] for the stresses are identical 'With Equations [1] and

[2], respectively, if the functions b (Ox), 0 (6z), o(ox) and (Bx) as defined by Ecuations

[7] are substituted therein.

To derive Equations [3], [4], and [5] for the strain distributions it is merely necessary

to substitute Equations [C.181 and [C.19] into the two-dimensional Hooke's law, Equation

[C.2], which expresses the strains ex and e in terms of the stresses.
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